Formation of a Novel N–N Bond through SO Extrusion. Regioselective Synthesis of 1,2,6-Thiadiazine S-Oxides and Pyrazoles

By José Barluenga, J. Francisco López-Ortiz, and Vicente Gotor (Departmento de Química Orgánica, Facultad de Ciencias, Universidad de Oviedo, Oviedo, Spain)

Summary The preparation of the 1,2,6-thiadiazine S-oxides (3) and their conversion into the pyrazoles (4) is described; the formation of (4) results from N-N bond formation following the extrusion of SO.

WE have already reported¹ on the versatility of (1) in the synthesis of heterocyclic compounds with one or two nitrogen atoms in the ring. We now report a new method for the synthesis of 1,2,6-thiadiazine S-oxides by reaction of (1) with thionyl chloride in pyridine or benzene-triethylamine as a solvent at room temperature. The results are summarized in the Table.

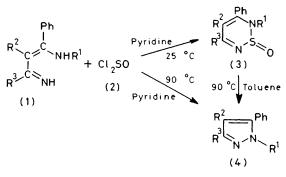


TABLE. Thiadiazine S-oxides (3) and pyrazoles (4) obtained from di-imines (1)

R1	\mathbb{R}^2	\mathbb{R}^3	(3)		(4)	
			% Yield	M.p. $(t/^{\circ}C)$	% Yield	M.p. $(t/^{\circ}C)$
\mathbf{Ph}	н	\mathbf{Ph}	86	153 - 154	93	138 - 139
p-MeC ₆ H₄	Н	p-MeC ₆ H ₄	87	184 - 185	90	173 - 175
p-MeC H	Н	c-C ₆ H ₁ ^a	84	122 - 124	94	163 - 165
í Ph i	\mathbf{Me}	Ph	80	133 - 135	86	122 - 124
p-MeC ₆ H₄	${\rm Me}$	p-MeC ₆ H₄	79	161 - 162	86	144 - 146
' Ph	Me	∕p-MeC H	82	148 - 149	88	168 - 170
c-C _e H ₁₁	${ m Me}$	· Ph ·	85	146 - 147	85	96 - 98
$c-C_{6}H_{11}$	${ m Me}$	p-MeC ₆ H ₄	84	160 - 161	84	147149
			a.C1.1			

^a Cyclohexyl.

The hydrolysis of (3) with 6N-KOH at 60 °C yields the starting material (1). However, when (3) is heated in toluene at 90 °C the pyrazoles (4) are obtained in high yields (see Table), via N-N bond formation following the extrusion of SO. The compounds (4) can also be obtained in situ when (1) reacts with (2) in pyridine at 90 $^{\circ}C.^{2}$

A typical procedure for the synthesis of compounds (3) is as follows. Thionyl chloride (0.012 mol) was added to (1)(0.01 mol) in pyridine (50 ml) at 0 °C. The stirred mixture

was warmed to room temperature; after 2 h 4N H₂SO₄ was added and compounds (3) were extracted into ether and purified by recrystallization from hexane. The pyrazoles (4) were obtained by heating (3) in toluene at 90 °C for 8 h, and were recrystallized from hexane following elimination of toluene in vacuo.

(Received, 2nd July 1979; Com. 702.)

¹ J. Barluenga, M. Tomás, V. Rubio, and V. Gotor, *J.C.S. Chem. Comm.*, 1979, 675, and references therein. ² The structures of $(4; R^3 = Ph)$ were corroborated by an alternative synthesis by the reaction of 1,3-dicarbonyl compounds with phenylhydrazine. See J. Elguero and R. Jacquier, Bull. Soc. chim. France, 1966, 2832.